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Abstract
A method is given to obtain the Green function for the Poisson equation in any
arbitrary integer dimension under periodic boundary conditions. We obtain
recursion relations which relate the solution in d-dimensional space to that in
(d − 1)-dimensional space. Near the origin, the Green function is shown to
split into two parts, one is the essential Coulomb singularity and the other is
regular. We are thus able to give representations of the Coulomb sum in higher
dimensions without recourse to any integral representations. The expressions
converge exponentially fast in all parts of the simulation cell. Works of several
authors are shown to be special cases of this more general method.

PACS numbers: 02.70.Ns, 02.70.Rr, 05.10.−a

1. Introduction

The Poisson equation is probably one of the most useful equations in physics. In a two-
dimensional (2D) space, the periodic solution of this equation corresponds to the solution of
particles interacting with the logarithmic interaction, and it has applications in simulations
of 2D pancake vortices in high-temperature superconductors [1]. In 3D, periodic solutions
to the Poisson equation are used in electromagnetism. Here, the solution of the Poisson
equation corresponds to a number of charges interacting with the Coulomb potential. This 3D
periodic solution is routinely used in most simulations involving charged particles. Recently,
the periodic solution of the Poisson equation in higher dimensions has found use in the string
theory.

In 1D and 2D, the Green function for the Poisson equation for a charge neutral box may
be obtained in a closed form. In 3D, one can obtain rapidly converging series representations
using the well-known method by Ewald [2]. Two other approaches for the 3D case were given
by Lekner [3] and Sperb [4]. However, in higher dimensions, one can either use the Ewald
method which has its drawbacks, or use the Jacobi theta function identities [5]. In general,
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there is no efficient way to calculate the Green function in a general d-dimensional space with
d > 3.

In this paper, we give two exponentially fast converging series representations for the
Green function of the Poisson equation in any positive integer dimension. This work will
generalize the methods employed for 2D and 3D cases [7], and will tie together the different
approaches taken by Lekner [3] and Sperb [4] for the special case of d = 3. The outline of
the paper is as follows. In section 2 we derive expressions giving the Coulomb sum in the
d-dimensional space. In section 3 we derive recursive relations using the result of section 2.
In section 4 we discuss the results.

2. Green function in d dimensions

For simplicity, we consider the case of a unit charge situated within a cubic box in d dimensions.
The sides of the box are all assumed to be of unit length. From here onwards, we will refer
to the box as the simulation cell. The basic simulation cell repeats itself in all d dimensions.
We also assume a charge neutral system. The unit charge interacts with other identical unit
charges (for the case of different charges q1 and q2, one just gets an extra factor of q1q2)
situated at the vertices of the periodic structure. The periodic Green function in d dimensions
satisfies the Poisson equation,

∇2
dG(r) = −Cd

∑
l

δ(r + l), (2.1)

where ∇2
d is the Laplacian operator in d dimensions, l denotes a d-dimensional vector, whose

components are integers ranging over −∞ to +∞, and Cd is a dimension-dependent factor.
The value of Cd for various dimensions is

Cd =



2 d = 1
2π d = 2,

4πν+1/�(ν) d > 2.

Here, �(ν) stands for the Gamma function, and ν = (d − 2)/2. We note that with this choice
of Cd in equation (2.1 ), the G stands for the Coulomb-type summation in d dimensions. Thus,
G corresponds to a sum of the type −|r| in 1D, a logarithmic sum, −ln|r|, in 2D and a sum
of the type |r|−(d−2) for a d-dimensional space with d > 2. The solution of equation (2.1)
diverges, which is a simple consequence of the fact that the interaction energy of a charge with
another charge and all its periodic images is infinite. To obtain a meaningful value of G we
will have to modify equation (2.1) as follows [6]:

∇2Gd(r) = −Cd

∑
l

δ(r + l) + Cd. (2.2)

The second term in equation (2.2) amounts to the presence of a uniform background charge.
Thus, for every charge, q, one may imagine a uniform distribution of charge, such that the total
charge per basic simulation cell adds up to −q. For a charge neutral periodic system, imposing
these kinds of background uniform charge distributions does not matter since the total uniform
background charge adds up to zero. However, now a unit charge located within the basic
simulation cell at position {xi} not only interacts with a second charge located at the origin and
its periodic images, but also interacts with the neutralizing background charge accompanying
the second particle. This particular way of introducing the artificial neutralizing background
charge leads to only the intrinsic part [3] of the potential energy. We note that once the Green
function is obtained, the solution of the equation

∇2Vd = −Cdρ(r)
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under periodic boundary conditions could be simply obtained from

Vd =
∫

cell
Gd(r − r′)ρ(r′) dr′,

where ρ is periodic and the simulation cell is overall charge neutral. The rapid evaluation of
the Gd is discussed in the next section.

The solution of equation (2.2) can be written easily in the Fourier space as [7]:

Gd(x1, x2, . . . , xd) = Cd

(2π)2
lim
β→0


∑

{m}d

ei2π(m1x1+m2x2+···+mdxd ){
m2

1 + m2
2 + · · · + m2

d + β2/4π2
} − 4π2

β2


 , (2.3)

where β is an infinitesimal parameter which tends to zero. Here, the set {m1,d} denotes a
set of d integers {m1,m2, . . . , md}. Each one of these integers mi runs over −∞ to +∞.

Also, x1, x2, . . . , xd denote the components of vector rd in d dimensions. Due to the periodic
boundary conditions, it is sufficient to treat the case where each xi satisfies −0.5 < x � 0.5.
The complete expression for the potential has a term arising from the surface contribution.
For the 2D case this term turns out to be zero, but for 3D one obtains a contribution from a
dipole term [9]. At this point, we would recast equation (2.3) in an alternative form. For that,
we use the fact that the solution of

(∇2 − β2)Q0(r;β) = −δ(r) (2.4)

in d-dimensional space is given by

Q0(r;β) = 1

(2π)ν+1

βνKν(β|r|)
rν

. (2.5)

Thus, the solution of

(∇2 − β2)Qd(r;β) = −Cd

∑
l

δ(r + l) (2.6)

in d-dimensional space will be given by

Qd(r;β) = Cd

(2π)ν+1

∑
{m1,d }

[
βν Kν(βr1,d )

rν
1,d

]
, (2.7)

where

r1,d =
[

d∑
i=1

(mi − xi)
2

]1/2

. (2.8)

On the other hand, the solution of equation (2.4) can be written down in the Fourier space
easily as

Qd(r;β) = Cd

(2π)2

∑
{m}d

ei2π(m1x1+m2x2+···+mdxd ){
m2

1 + m2
2 + · · · + m2

d + β2/4π2
} . (2.9)

Using equations (2.3) and (2.7) we see that one can write

Gd(x1, x2, . . . , xd) = Cd lim
β→0


 1

(2π)ν+1

∑
{m1,d }

[
βν Kν(βr1,d )

rν
1,d

]
− 1

β2


 . (2.10)

Yet another alternative form of Gd can be obtained as follows. We can perform one of the d
sums in equation (2.3) analytically using the formula [8]

∞∑
m=−∞

exp(2π imx)

m2 + γ 2
= π

γ

cosh[πγ (1 − 2|x|)]
sinh(πγ )

. (2.11)
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Thus, we obtain

Gd(x1, x2, . . . , xd) = Cd

(2π)2
lim
β→0


 ∑

{m2,d }

π

γ{m2,d }

cosh[πγ{m2,d }(1 − 2|x1|)]
sinh(πγ{m2,d })

× exp

[
2π i

d∑
i=2

mixi

]
− 1

β2


 , (2.12)

where γ{m2,d } is defined as

γ{m2,d } =
(

d∑
i=2

m2
i + β2

)1/2

. (2.13)

For the purpose of taking the limit β → 0, the sum in the first part of equation (2.12) is broken
as

∑
{m2,d }

=
′∑

{m2,d }
+ (Term with m2 = 0,m3 = 0, . . . , md = 0), (2.14)

where a prime over the summation sign indicates that the term corresponding to all mi being
zero is to be excluded from the summation. This leads to the following representation for Gd :

Gd(x1, x2, . . . , xd) = Cd

(2π)2

′∑
{m2,d }

π

γ{m2,d }

cosh
[
πγ{m2,d }(1 − 2|x1|)

]
sinh

(
πγ{m2,d }

)

× exp

(
2π i

d∑
i=2

mixi

)
+ Hd(x1, x2, . . . , xd), (2.15)

where we have taken the limit β → 0, i.e. we have substituted β = 0 in the first part, and Hd

is given by

Hd(x1, x2, . . . , xd) = Cd

(2π)2
lim
β→0

(
2π2

β

cosh [(1/2 − |x1|)β]

sinh(β/2)
− 4π2

β2

)

= Cd

1

12

(
1 − 6|x1| + 6x2

1

)
. (2.16)

To avoid the bad convergence towards x1 → 0, we further modify the summation in the first
part of equation (2.15) by using the following trigonometric identity

cosh(a − b)

sinh(b)
= exp(−b)

cosh(a)

sinh(b)
+ exp(−a). (2.17)

Thus, Gd can be written as

Gd = Hd + Jd + Md, (2.18)

where Hd is defined in equation (2.16), Jd is given by

Jd(x1, x2, . . . , xd) = Cd

(2π)2

′∑
{m2,d }

π

γ{m2,d }
exp

(−πγ{m2,d }
)

× cosh
[
πγ{m2,d }(1 − 2|x1|)

]
sinh

(
πγ{m2,d }

) exp

(
2π i

d∑
i=2

mixi

)
(2.19)
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and

Md(x1, x2, . . . , xd) = Cd

(2π)2

′∑
{m2,d }

π

γ{m2,d }
exp

[−2|x1|πγ{m2,d }
]

exp

(
2π i

d∑
i=2

mixi

)
. (2.20)

In equations (2.19) and (2.20) β is to be set equal to zero. It is easy to see that equation (2.19)
does not have any convergence problem as x1 tends to zero. Thus, the whole problem has
reduced to evaluating the Md term efficiently. This will be done in the next section.

3. Recursive formulae

In this section we obtain recursive formulae for Gd in two different ways, starting with the
expressions in equations (2.10) and (2.18) respectively. The first method, with equation (2.10)
as the starting point, will contain Lekner’s results for d = 3 as a special case, while the second
method will contain Sperb’s result in 3D as a special case. With the help of equations (2.10)
and (2.3) we can write

Gd(x1, x2, . . . , xd) = Cd

(2π)2
lim
β→0

(
Qd(x1, x2, . . . , xd;β) − 1

β2

)

= Cd

(2π)2
lim
β→0


 ∑

{m1,d }
exp(2π im1x) × exp

(
2π i

∑d
i=2 mixi

)
∑d

i=2 m2
i +

[
β2 + m2

1

] − 1

β2


 .

(3.1)

Using the definition of Gd , equation (3.1) can be written as

Gd(x1, x2, . . . , xd) = Cd

Cd−1
lim
β→0

[∑
m1

exp(2π im1x1)

× Qd−1
(
x2, . . . , xd;

√
β2 + (2πm1)2

) − Cd−1

β2

]
. (3.2)

We separate out the term corresponding to m1 = 0 in equation (3.2) so that the limit
corresponding to β can be taken. Thus, we write equation (3.1) as

Gd(x1, x2, . . . , xd) = 2
Cd

Cd−1

∞∑
m1=1

cos(2πm1x1)Qd−1(x2, x3, . . . , xd; 2πm1)

+
Cd

Cd−1
lim
β→0

[
Qd−1(x2, x3, . . . , xd;β) − Cd−1

β2

]

= 2
Cd

Cd−1

∞∑
m1=1

cos(2πm1x1)Qd−1(x2, x3, . . . , xd; 2πm1)

+
Cd

Cd−1
Gd−1(x2, x3, . . . , xd), (3.3)

where we have taken the limit β → 0 in the first term. Equation (3.3) is one of the most
important results of this paper. This relates a d-dimensional sum to a (d − 1)-dimensional
sum. This is a recursive relation. If one is able to obtain the Green function for the (d − 1)-
dimensional space, one can obtain the Green function for the d-dimensional space. The first
term in equation (3.3) can be modified in the following way. We can use a form of Gd−1
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similar to the one used in equation (2.7) to obtain

Gd(x1, x2, . . . , xd) = 2
Cd

(2π)ν+1/2

∞∑
m1=1

∑
{m2,d }

cos(2πm1x1)

× (2πm1)
ν−1/2 Kν−1/2(2πm1r2,d )

r
ν−1/2
2,d

+
Cd

Cd−1
Gd−1(x2, x3, . . . , xd), (3.4)

where {m2,d} denotes a sum over sets {m2,m3, . . . , md} and r2,d is defined like equation (2.8)

r2,d =
[

d∑
i=2

(mi − xi)
2

]1/2

. (3.5)

Let us now consider three different cases corresponding to d = 1, d = 2 and d > 2. For d = 1
we can evaluate Gd=1 in closed form:

G1(x1) = C1

(2π)2
lim
β→0

(∑
m1

exp(2π im1x1)

β2 + m2
1

− 1

β2

)

= C1

(2π)2
lim
β→0

(
π

β

cosh[πβ(1 − 2|x1|)]
sinh[πβ]

− 1

β2

)

= C1
1

12

(
1 − 6|x1| + 6x2

1

)
. (3.6)

Also, the self-energy for this case may be obtained as

Gself
1 = lim

x1→0
G1 + |x1| = C1

12
. (3.7)

For d = 2, we obtain using equation (2.10):

G2(x1, x2) = 2
C2

(2π)1/2

∞∑
m1=1

∞∑
m2=−∞

cos(2πm1x1)(2πm1)
−1/2

× K−1/2 (2πm1|x2 + m2|)
|x2 + m2|−1/2

+
C2

C1
G1(x2). (3.8)

Now, using the relation [8]

K−1/2(r) =
√

π

2r
exp(−r), (3.9)

we can write

G2(x1, x2) = C2

2π

∞∑
m2=−∞

∞∑
m1=1

cos(2πm1x1)

|m1| exp(−2πm1|x2 + m2|) +
C2

C1
G1(x2). (3.10)

The sum over m1 can be easily carried out using the identity [7]

L(x1, x2) =
∞∑

m1=1

cos(2πm1x1)

m1
exp(−2πm1|x2|)

= −1

2
ln(1 − 2 exp[−2πx2] cos[2πx1] + exp[−4πx2]). (3.11)

Thus, G2 can be written as

G2(x1, x2) = C2

2π

∞∑
m2=1

L(x1, |x2 + m2|) + L(x1, |x2 − m2|) + L(x1, x2) +
C2

C1
G1(x2). (3.12)
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It is also trivial to derive

Gself
2 = 2

C2

2π

∞∑
m2=1

L(0, |m2|) − ln 2π +
C2

12
. (3.13)

Now we consider the case for d > 2. We can obtain Gd from equation (3.4). It is seen that
for large arguments the modified Bessel functions decay as

Kν(r) ∼
√

π

2r
exp(−r). (3.14)

As a result, the first term in equation (3.4) decays exponentially. However, one may run into a
problem if r2,d is very small. In such a case the terms corresponding to {m2,d} all being zero
form a very slowly converging series over m1. This problem of slow convergence when r2,d is
small can be handled in the following recursive manner. We separate out the particular terms
corresponding to {m2,d} all being zero, and define

Ed(x1, x2, . . . , xd) = 2
Cd

(2π)ν+1/2

∞∑
m1=1

∑
{m2,d }

cos(2πm1x1)(2πm1)
ν−1/2 Kν−1/2(2πm1r2,d )

r
ν−1/2
2,d

= 2
Cd

(2π)ν+1/2

∞∑
m1=1

′∑
{m2,d }

cos(2πm1x1)(2πm1)
ν−1/2 Kν−1/2(2πm1r2,d )

r
ν−1/2
2,d

+ 2
Cd

(2π)ν+1/2

∞∑
m1=1

cos(2πm1x1)(2πm1)
ν−1/2 Kν−1/2(2πm1r)

r
ν−1/2
⊥

, (3.15)

where

r2
⊥ =

d∑
i=2

x2
i . (3.16)

Now, we show how to handle the evaluation of Ed corresponding to d > 3. The case for
d = 3 will be almost the same. Using the relation [8] (which by the way can be derived from
equation (3.1))

∞∑
k=−∞

1

[(x + k)2 + r2]
1
2 +ν

=
√

π

�
(
ν + 1

2

)
{

�(ν)

r2ν
+ 4

(
π

r

)ν

×
∞∑
l=1

lνKν(2πlr) cos(2πlx)

}
, ν > 0, (3.17)

we can write

Ed(x1, x2, . . . , xd) = 2
Cd

(2π)ν+1/2

∞∑
m1=1

′∑
{m2,d }

cos(2πm1x1)

[
(2πm1)

ν−1/2 Kν−1/2(2πm1r2,d )

r
ν−1/2
2,d

]

+
∞∑

k=−∞

1[
(x1 + k)2 + r2

⊥
]ν −

√
π

�(ν)

�(ν − 1/2)

r2ν−1
⊥

. (3.18)

Also, the sum over k in equation (3.18) can be written as
∞∑

k=−∞

1

[(x + k)2 + r2]ν
= 1

(x2 + r2)ν
+

N−1∑
k=1

(
1

[(x + k)2 + r2]ν
+

1

[(x − k)2 + r2]ν

)

+
∞∑
l=1

(−ν

l

)
r2l[ζ(2l + 2ν,N + x) + ζ(2l + 2ν,N − x)], (3.19)
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where N is an arbitrary integer [7] such that N > r + |x|. Using equations (3.4), (3.18) and
(3.19) we can now write

Gd(x1, x2, . . . , xd) − 1(
x2

1 + r2
⊥
)ν+1/2 = 2

Cd

(2π)ν+1/2

∞∑
m1=1

′∑
{m2,d }

cos(2πm1x1)

× (2πm1)
ν−1/2 Kν−1/2(2πm1r2,d )

r
ν−1/2
2,d

+
N−1∑
k=1

(
1[

(x1 + k)2 + r2
⊥
]ν +

1[
(x1 − k)2 + r2

⊥
]ν

)

+
∞∑
l=1

(−ν

l

)
r2l
⊥ [ζ(2l + 2ν,N + x1) + ζ(2l + 2ν,N − x1)]

+
Cd

Cd−1

(
Gd(x2, . . . , xd) − 1

r2ν
⊥

)
. (3.20)

Note that if d = 3 then instead of equation (3.19) we should use

4
∞∑

m1=1

K0
(
2πm1

(
x2

2 + x2
3

)1/2 )
cos(2πm1x1) = 2

{
γ + ln

((
x2

2 + x2
3

)1/2

2

)}

+
1√

x2
1 + x2

2 + x2
3

+ S(x1, x2, x3), (3.21)

where

S(x1, x2, x3) =
N−1∑
n=1


 1√

x2
2 + x2

3 + (n + x1)2
+

1√
x2

2 + x2
3 + (n − x1)2




+
1√

x2
1 + x2

2 + x2
3

− 2γ − [ψ(N + x1) + ψ(N − x1)]

+
∞∑
l=1

(−1/2

l

) (
x2

2 + x2
3

)l
[ζ(2l + 1, N + x) + ζ(2l + 1, N − x)]. (3.22)

Thus, for the 3D case one would make the following two changes in the expression given
in equation (3.20). First, there would be an extra term containing −2γ − [ψ(N + x1) +
ψ(N − x1)] on the right-hand side, and second the last term in equation (3.20) would be
changed to

Cd

Cd−1
[Gd−1(x2, x3) + ln r⊥]. (3.23)

Equation (3.20) provides us with a general algorithm to calculate Gd efficiently in any
dimensions. For example, if we had started out with d = 10, we can obtain G10 − r−8

8 by
calculating G9 − r−7

7 . Continuing in this fashion we will come down to calculating G2 + ln r2.

Now, this last part G2 + ln r2 has been obtained by several authors. In fact, it can be obtained
in a closed form [5]. Thus, we have been able to calculate G10 − r−8

8 from which we can
obtain G10 by taking the radial part r−8

8 on the other side. Other forms of G2 are given by
Gronbech-Jensen [11] and Tyagi [7]. For the sake of completeness we write down the result
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for G2:

G2(x1, x2) = 1

2π

′∑
m

π

|m|
exp(−π |m|) cosh[2πmx1]

sinh(π |m|) cos(2πmx2) − 1

2
ln[cosh(2πx1)

− cos(2πx2)] +
π

6

(
1 + 6x2

2

) − ln(2)

2
. (3.24)

In closed form G2 is written as [10]

G2(x1, x2) = 2π

(
x2

2

2
− ln 2

6π
+

1

2π
ln

∣∣∣∣ϑ1[π(x1 + ix2), exp(−π)]

ϑ
′
1[0, exp(−π)]1/3

∣∣∣∣
)

, (3.25)

where ϑ1 represents the Jacobi theta function of the first kind. Also, the self-energy for the
2D case can be obtained from equation (3.24)

Gself
2 = 1

π

∞∑
m=1

π

|m|
exp(−π |m|)
sinh(π |m|) − ln(2π) +

π

6
, (3.26)

or it can be obtained from equation (3.25):

Gself
2 = − ln 2

3
− ln π − 2

3
ln|[ϑ ′

1(0, q)]|. (3.27)

All three forms equations (3.13), (3.26) and (3.27) are equivalent and give numerically the
same value for the self-energy. Similarly equations (3.12), (3.24) and (3.25) show perfect
agreement.

Now, we give another alternative approach for the evaluation of Gd . This time we start
with equation (2.18), where Hd, Jd and Md are defined in equations (2.16), (2.19) and (2.20).
Hd and Jd do not have any convergence problem in the region of interest. We show how to
handle Md . A recursion formula similar to equation (3.4) can be established for Md . It is easy
to see just by inspection that Md obeys the following recursion formula:

Md(x1, x2, . . . , xd) = Cd

Cd−1
Md−1(x1, x3, . . . , xd)

+ 2
Cd

(2π)ν+1/2

∞∑
m2=1

cos(2πm2x2)(2πm2)
ν−1/2

×
∑
{m3,d }

Kν−1/2
(
2πm2

√
x2

1 + (m3 − x3)2 + · · · + (md − xd)2
)

[√
x2

1 + (m3 − x3)2 + · · · + (md − xd)2
]ν−1/2

, (3.28)

where Md−1, analogous to equation (2.20), stands for

Md−1(x1, x3, . . . , xd) = Cd−1

(2π)2

′∑
{m3,d }

π

γ{m3,d }
exp[−2|x1|πγ{m3,d }] exp

(
2π i

d∑
i=3

mixi

)
.

(3.29)

In the final step, we break the sum in the second part of equation (3.28) as follows

∑
{m3,d }

=
′∑

{m3,d }
+

∑
m3=0,m4=0,...,

, (3.30)
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The term corresponding to m3 = 0,m4 = 0 . . . gives rise to a term Fd in equation (3.28):

Fd(x1, x2, . . . , xd) = 2
Cd

(2π)ν+1/2

∞∑
m2=1

cos(2πm2x2)(2πm2)
ν−1/2

×
Kν−1/2

(
2πm2

√
x2

1 + x2
3 + · · · + x2

d

)
[√

x2
1 + x2

3 + · · · + x2
d

]ν−1/2

= 1√
x2

1 + x2
2 + · · · + x2

d

− Cd

Cd−1

1√
x2

1 + x2
3 + · · · + x2

d

+
N−1∑
k=1

(
1[

(x2 + k)2 + r2
2

]ν +
1[

(x2 − k)2 + r2
2

]ν

)

+
∞∑
l=1

(−ν

l

)
r2l

2 [ζ(2l + 2ν,N + x2) + ζ(2l + 2ν,N − x2)], (3.31)

where

r2
2 = x2

1 + x2
3 + · · · + x2

d . (3.32)

Thus, we finally obtain the following recursion relationship for Md :(
Md − 1(

x2
1 + x2

2 + · · · + x2
d

)ν+1/2

)
= Cd

Cd−1

(
Md−1 − 1(

x2
1 + x2

3 + · · · + x2
d

)ν

)

+ 2
Cd

(2π)ν+1/2

∞∑
m2=1

cos(2πm2x2)(2πm2)
ν−1/2

×
′∑

{m3,d }

Kν−1/2
(
2πm2

√
x2

1 + (m3 − x3)2 + · · · + (md − xd)2
)

[√
x2

1 + (m3 − x3)2 + · · · + (md − xd)2
]ν−1/2

+
N−1∑
k=1

(
1[

(x2 + k)2 + r2
2

]ν +
1[

(x2 − k)2 + r2
2

]ν

)

+
∞∑
l=1

(−ν

l

)
r2l

2 [ζ(2l + 2ν,N + x2) + ζ(2l + 2ν,N − x2)]. (3.33)

For d = 3, once again, we will have to make two modifications in equation (3.33). With this
approach we have obtained equation (3.33), which is analogous to equation (3.20). However,
the analysis has become a little bit tedious. The advantage of the second method is that
it reduces the computation time, as there is one less summation. The second advantage is
that it can be written down in a product decomposition form. For an example how such a
product decomposition form may be written, one may consult Sperb [4], where a special case
corresponding to d = 3 is considered. In general, the procedure of dimensional reduction is
to be continued until we have M1 on the left-hand side. It is clear that M1 = 0. Let us again
consider three special cases. For d = 1 one only has Hd=1 and thus G1 = H1. For d = 2 one
obtains

J2(x1, x2) = C2

(2π)2

′∑
m2

π

γm2

exp
(−πγm2

) cosh
[
πγm2(1 − 2|x1|)

]
sinh

(
πγm2

) exp(2π im2x2), (3.34)
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and M2 from equations (2.20) and (3.11) turns out to be related to L:

M2(x1, x2) = L(x2, x1). (3.35)

Combining H2, J2 and M2 we obtain the form of G2 given in equation (3.24). Considering
finally the case for d > 2, we can obtain Gd again from equation (2.18). Now Kd and Hd are
convergent and Md can be obtained using the recursive relation (3.33). For example:(

M3 − 1(
x2

1 + x2
2 + x2

3

)1/2

)
= C2

C1

[
M2(x1, x3) + ln

(√
x2

1 + x2
3

)]

+ 2
C2

(2π)1/2

∞∑
m2=1

cos(2πm2x2)

′∑
m3

K0
(
2πm2

√
x2

1 + (m3 − x3)2
)

+
N−1∑
k=1

(
1[

(x2 + k)2 + x2
1 + x2

3

]1/2 +
1[

(x2 − k)2 + x2
1 + x2

3

]1/2

)

− 2γ − [ψ(N + x2) + ψ(N − x2)] +
∞∑
l=1

(−ν

l

) (
x2

1 + x2
3

)l

× [ζ(2l + 2ν,N + x2) + ζ(2l + 2ν,N − x2)], (3.36)

where M2 has already been evaluated in equations (3.11) and (3.35) in terms of L2. We see
that in all cases, the expression could be written in a form such that the essential Coulomb
singularity as the two charges approach each other has been isolated.

4. Conclusions

Using the limiting behaviour of the modified Bessel functions, we showed how conditionally
convergent Coulomb sums may be handled in an elegant way. We gave two representations
of the Green function for the Poisson equation in any integer-dimensional space. A recursive
method was derived that can be applied for wholly periodic cases, as well as for those cases
where one may have open boundary conditions along one of the directions. The method may
be extended to cover the case where any number of directions may be open. The formulae
obtained show rapid convergence in all parts of the simulation cell. This method is general
enough that it can be easily generalized for a higher-dimensional ‘triclinic’ cell. A particular
case of the application of this method for a triclinic cell can be seen in a recent paper [12].
We have shown that the present work generalizes the work of several authors on periodic and
partial periodic systems [3, 4, 13]. To our knowledge, this treatment is the first of its kind ever
taken in a dimension higher than d = 3.
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